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Abstract
High order entropy stable discontinuous Galerkin (DG) methods for nonlinear conserva-
tion laws satisfy an inherent discrete entropy inequality. The construction of such schemes
has relied on the use of carefully chosen nodal points (Gassner in SIAM J Sci Comput
35(3):A1233–A1253, 2013; Fisher and Carpenter in J Comput Phys 252:518–557, 2013;
Carpenter et al. in SIAM J Sci Comput 36(5):B835–B867, 2014; Crean et al. in J Comput
Phys 356:410–438, 2018; Chan et al. in Efficient entropy stable Gauss collocation methods,
2018. arXiv:1809.01178) or volume and surface quadrature rules (Chan in J Comput Phys
362:346–374, 2018; Chan and Wilcox in J Comput Phys 378:366–393, 2019) to produce
operators which satisfy a summation-by-parts (SBP) property. In this work, we show how to
construct “modal” DG formulations which are entropy stable for volume and surface quadra-
tures under which the SBP property in Chan (2018) does not hold. These formulations rely on
an alternative skew-symmetric construction of operators which automatically satisfy the SBP
property. Entropy stability then follows for choices of volume and surface quadrature which
satisfy sufficient accuracy conditions. The accuracy of these new SBP operators depends on
a separate set of conditions on quadrature accuracy, with design order accuracy recovered
under the usual assumptions of degree 2N − 1 volume quadratures and degree 2N surface
quadratures. We conclude with numerical experiments verifying the accuracy and stability
of the proposed formulations, and discuss an application of these formulations for entropy
stable DG schemes on mixed quadrilateral-triangle meshes.

Keywords Entropy stability · High order · Discontinuous Galerkin · Hybrid meshes ·
Nonlinear conservation laws · Compressible Euler equations

1 Introduction

Highordermethods for the simulation of time-dependent compressible flowhave the potential
to achieve higher levels of accuracy at lower costs compared to current low order schemes

B Jesse Chan
jesse.chan@rice.edu

1 Department of Computational and Applied Mathematics, Rice University, 6100 Main Street,
Houston, TX 77005, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-019-01026-w&domain=pdf
http://orcid.org/0000-0003-2077-3636
http://arxiv.org/abs/1809.01178


460 Journal of Scientific Computing (2019) 81:459–485

[1]. In addition to superior accuracy, the low numerical dispersion and dissipation of high
order methods [2] enables the accurate propagation of waves over long distances and time
scales. The same properties also make high order methods attractive for unsteady phenomena
such as vorticular and turbulent flows, which are sensitive to numerical dissipation [1,3].

However, when applied to nonlinear conservation laws, high ordermethods can experience
artificial growth and blow-up near under-resolved features such as shocks or turbulence. In
practice, the application of high ordermethods to practical problems requires shock capturing
and stabilization techniques (such as artificial viscosity) or solution regularization (such
as filtering or limiting) to prevent solution blow-up. The resulting schemes for nonlinear
conservation laws walk a fine line between stability, robustness, and accuracy. Aggressive
stabilization or regularization can result in the loss of high order accuracy, while too little
can result in instability [1]. Moreover, it can be difficult to determine robust expressions for
stabilization paramaters, as parameters which work for one simulation can fail when applied
to a different physical regime or discretization setting.

These issues have motivated the introduction of high order entropy stable discretizations,
which satisfy a semi-discrete entropy inequality while maintaining high order accuracy in
smooth regions. Proofs of continuous entropy inequalities rely on the chain rule, which
does not hold discretely due to effects such as quadrature error. Entropy stable schemes
were originally introduced in the context of finite volume methods [4–9]. They were then
extended to high order collocation DG methods on tensor product elements in [10–13] and
to simplicial elements in [14–18]. These extensions combine summation-by-parts (SBP) dif-
ferentiation operators, which satisfy a matrix analogue of integration by parts, with “flux
differencing” for the discretization of nonlinear convective terms. Together, these techniques
cirvument the loss of the chain rule while preserving a semi-discrete analogue of the con-
tinuous entropy inequality. Entropy stable methods have also been extended to a variety of
other discretization settings, including staggered grids [19,20], Gauss–Legendre collocation
[21], and non-conforming meshes [22].

Entropy stable “modal” DG discretizations [15,16] are built upon flux differencing and
the SBP property. However, the SBP property does not hold for certain under-integrated
quadrature rules, which arise naturally in some discretization settings. For example, on hybrid
meshes consisting of both quadrilateral and triangular elements, it is convenient to utilize
the same quadrature rule on shared faces between different element types. On degree N
quadrilateral elements, a popular choice of quadrature is an (N +1)-point Gauss–Legendre–
Lobatto (GLL) rule.When both volume and surface integrals are approximated using (N+1)
point GLL quadrature rules, the SBP property holds, despite the fact that GLL quadrature is
inexact for the integrands which appear in finite element formulations [10]. However, while
GLL quadrature induces an SBP property on quadrilateral elements, it does not guarantee an
SBP property if used on triangular elements [15].

This work proposes an alternative formulation which utilizes a skew-symmetric construc-
tion of the SBP operator which satisfies the SBP property by construction. Under such a
formulation, the proof of entropy stability holds under weaker quadrature rules compared
to the SBP property introduced in [15,16]. We show that this skew-symmetric formulation
is entropy stable, locally conservative, and free-stream preserving on curved elements, and
confirm theoretical results with numerical experiments on hybrid triangular-quadrilateral
meshes.

It should be noted that a similar approach to entropy stable discretizations was introduced
within a finite difference framework [14,18] using multidimensional differencing operators
which satisfy similar accuracy conditions and an SBP property [23]. These operators exist
for nodal points corresponding to sufficiently accurate choices of volume and surface quadra-
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ture, but do not correspond to any specific basis or approximation space. The formulations
in [14,18] differ from the ones presented in this work in that they are based on SBP finite
differences and “nodal” (rather than “modal”) DG formulations, with differentiation opera-
tors computed algebraically or through an optimization problem for each specific choice of
nodes. In contrast, “modal” formulations induce quadrature-based operators from an explicit
approximation space, and accomodate general choices of volume and surface quadrature (e.g.
volume quadratures without boundary nodes and over-integrated quadrature rules).

The structure of the paper is as follows: Sect. 2 describes the continuous entropy inequality
which we aim to replicate discretely. Sections 3 and 4 introduce polynomial approximation
spaces and quadrature-based SBP operators on simplicial and tensor product elements. Sec-
tion 5 introduces an alternative skew-symmetric construction of SBP operators and describes
how to construct entropy stable formulations on a reference element. Connections between
the accuracy of the new skew-symmetric SBP operators and quadrature accuracy are also dis-
cussed. Section 6 extends the skew-symmetric formulation to curved elements, and provides
explicit conditions for entropy stability in terms of quadrature accuracy and the polynomial
degree of geometric mappings. Section 7 concludes by presenting numerical experiments
which verify the theoretical assumptions, stability, and accuracy of the proposed formula-
tions.

2 Entropy Stability for Systems of Nonlinear Conservation Laws

We begin by reviewing the dissipation of entropy for a d-dimensional system of nonlinear
conservation laws on a domain Ω

∂u
∂t

+
d∑

j=1

∂ f j (u)

∂x j
= 0, u ∈ R

n, f : Rn → R
n, (1)

where u are the conservative variables and f (u) is a vector-valued nonlinear flux function.
We are interested in nonlinear conservation laws for which a convex entropy function U (u)

exists. For such systems, the entropy variables are an invertible mapping v(u) : Rn → R
n

defined as the derivative of the entropy function with respect to the conservative variables

v(u) = ∂U

∂u
. (2)

Several widely used equations in fluid modeling (Burgers, shallowwater, compressible Euler
and Navier–Stokes equations) yield convex entropy functions U (u) [18,24]. Let ∂Ω be the
boundary of Ω with outward unit normal n. By multiplying the Eq. (1) with v(u)T , the
solutions u of (1) can be shown to satisfy an entropy inequality

∫

Ω

∂U (u)

∂t
dx +

∫

∂Ω

d∑

j=1

(
v(u)T f j (u) − ψ j (v(u))

)
n j dx ≤ 0, (3)

where n = (n1, . . . , nd) denotes the outward unit normal, and ψ j (u) is some function
referred to as the entropy potential.

The proof of (3) requires the use of the chain rule [25–27]. The instability-in-practice of
high order schemes for (1) can be attributed in part to the fact that the discrete form of the
equations do not satisfy the chain rule, and thus do not satisfy (3).As a result, discretizations of
(1) do not typically possess an underlying statement of stability. This can be offset in practice
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by the numerical dissipation inherent in lower order schemes. However, because high order
discretizations possess low numerical dissipation, the lack of an underlying discrete stability
has contributed to the perception that high order methods are inherently less stable than low
order methods.

3 Polynomial Approximation Spaces

In thiswork,we consider either simplicial reference elements (triangles and tetrahedra) or ten-
sor product reference elements (quadrilaterals and hexahedra). We define an approximation
space using degree N polynomials on the reference element; however, the natural polyno-
mial approximation space differs depending on the element type [28]. On a d-dimensional
reference simplex, the natural polynomial space consists of total degree N polynomials

PN (D̂
) =

{
x̂ i11 . . . x̂ idd , x̂ ∈ D̂, 0 ≤

d∑

k=1

ik ≤ N

}
.

In contrast, the natural polynomial space on a d-dimensional tensor product element is the
space of maximum degree N polynomials

QN (D̂
) =

{
x̂ i11 . . . x̂ idd , x̂ ∈ D̂, 0 ≤ ik ≤ N , k = 1, . . . , d

}
.

We denote the natural approximation space on a given reference element D̂ by V N . Further-
more, we denote the dimension of V N as Np = dim

(
V N

(
D̂
))
.

The proofs presented in this work will also refer to anisotropic tensor product polynomial
spaces, where themaximum polynomial degree varies depending on the coordinate direction.
We denote such spaces by QN1,...,Nd , where Nk are non-negative integers and

QN1,N2,...,Nd
(
D̂
) =

{
x̂ i11 . . . x̂ idd , x̂ ∈ D̂, 0 ≤ ik ≤ Nk, k = 1, . . . , d

}
.

For example, the isotropic tensor product space QN is the same as QN ,...,N .
We also define trace spaces for each reference element. Let f̂ be a face of the reference

element D̂. The trace space V N
(
f̂
)
is defined as the restrictions of functions in V N

(
D̂
)
to

f̂ , and denote the dimension of the trace space as dim
(
V N

(
f̂
)) = N f

p .

V N ( f̂
) =

{
u| f̂ , u ∈ V N (D̂

)
, f̂ ∈ ∂ D̂

}
.

For example, on a d-dimensional simplex, V N
(
∂ D̂
)
consists of total degree N polynomials

on simplices of dimension (d − 1). On a d-dimensional tensor product element, V N
(
∂ D̂
)

consists ofmaximumdegree N polynomials on a tensor product element of dimension (d−1).

4 Quadrature-BasedMatrices and “Hybridized” SBP Operators

Let D̂ ⊂ R
d denote a reference element with surface ∂ D̂. The high order schemes in [15,16]

begin by approximating the solution in a degree N polynomial basis
{
φ j (̂x)

}Np

j=1 on D̂, where
Np denotes the dimension of the polynomial space. These schemes also assume volume

and surface quadrature rules (̂xi , wi ),
(
x f
i , w

f
i

)
on D̂. We will specify the accuracy of

each quadrature rule later, and discuss how quadrature accuracy implies specific operator
properties.
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Let V q , V f denote interpolation matrices, and let Di be the differentiation matrix with
respect to the i th coordinate such that

(
V q
)
i j = φ j (̂xi ),

(
V f
)
i j = φ j (x

f
i ),

∂φ j (̂xi )

∂xi
=

Np∑

k=1

(
Di

jk

)
φk (̂xi ). (4)

The interpolation matrices V q , V f map basis coefficients to evaluations at volume and sur-
face quadrature points respectively,while the differentiationmatrix Di mapsbasis coefficients
of a function to the basis coefficients of its derivative with respect to xk . The interpolation
matrices are used to assemble the mass matrix M, the quadrature-based projection matrix
Pq , and lifting matrix L f

M = V T
q WV q , Pq = M−1V T

q W , L f = M−1V T
f W f , (5)

whereW ,W f are diagonal matrices of volume and surface quadrature weights, respectively.
We have also assumed that the volume quadrature is sufficiently accurate such that the
mass matrix M is positive-definite and invertible. The matrix Pq is a quadrature-based
discretization of the L2 projection operator ΠN onto degree N polynomials, which is given
as follows: find ΠNu ∈ V N such that

∫

D̂
ΠNuv =

∫

D̂
uv, ∀v ∈ V N . (6)

Interpolation, differentiation, and L2 projection matrices can be combined to construct
finite difference operators. For example, the matrix Di

q = V q Di Pq maps function values at
quadrature points to approximate values of the derivative at quadrature points. By choosing
specific quadrature rules, Di

q recovers high order summation-by-parts finite difference oper-
ators in [29–31] and certain operators in [23]. However, to address difficulties in designing
efficient entropy stable interface terms for nonlinear conservation laws, a new “hybridized”
summation by parts matrix was introduced in [15] which builds interface terms directly into
the approximation of the derivative.1

Let n̂ denote the scaled outward normal vector n̂ = {
n̂1 Ĵ f , . . . , n̂d Ĵ f

}
, where Ĵ f is the

determinant of the Jacobian of the mapping of a face of ∂ D̂ to a reference face. Let n̂i denote
the vector containing values of the i th component n̂i Ĵ f at all surface quadrature points, and
define the generalized SBP operator

Qi = WDi
q = WV q Di Pq .

The “hybridized” summation by parts operator Qi
N is defined as the block matrix involving

both volume and surface quadratures

E = V f Pq , Bi = W f diag (̂ni ) , Qi
N =

[
Qi − 1

2 E
T Bi E 1

2 E
T Bi

− 1
2 B

i E 1
2 B

i

]
. (7)

Here Bi is a boundary “integration” matrix, and E denotes the extrapolation matrix which
maps values at volume quadrature points to values at surface quadrature points using
quadrature-based L2 projection and polynomial interpolation.

For Qi which satisfy a “generalized” SBP property, the matrix Qi
N also satisfies a

summation-by-parts (SBP) property, which is used to prove semi-discrete entropy stabil-
ity for nonlinear conservation laws.

1 The term“hybridized” SBPoperatorwas introduced in the reviewpaper [32]. These operatorswere originally
referred to as “decoupled” SBP operators in [15]).
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Theorem 1 If Qi satisfies the generalized SBP property

Qi = ET Bi E −
(
Qi
)T

, (8)

then the hybridized SBP operator Qi
N (7) satisfies a summation by parts property:

Qi
N +

(
Qi

N

)T = Bi
N , Bi

N =
(
0
Bi

)
. (9)

Proof The proof is a straightforward extension of Theorem 1 in [15] to polynomial approx-
imation spaces on non-simplicial elements. ��

The matrix Qi satisfies a generalized SBP property if the volume and surface quadrature
rules are sufficiently accurate such that the quantities

∫

D̂

∂u

∂ x̂i
v,

∫

∂ D̂
uvn̂i

are integrated exactly for all u, v ∈ V N
(
D̂
)
and i = 1, . . . , d . This implies that Theorem 1 is

satisfied for sufficiently accurate volume and surface quadratures. For example, on simplicial
elements, (9) holds if the volume quadrature is exact for polynomial integrands of total
degree (2N − 1), and the surface integral is exact for degree 2N polynomials on each face.
Tensor product elements require stricter conditions: (9) holds if both the volume and surface
quadratures are exact for polynomial integrands of degree 2N in each coordinate, due to the
fact that derivatives of u ∈ QN are degree (N−1) polynomials with respect to one coordinate
and degree N with respect to others.

Remark 1 It should be stressed that the accuracy conditions on volume and surface quadra-
tures are sufficient but not necessary conditions for Theorem 1. For example, it is well known
that the use of (N + 1) point Gauss–Legendre–Lobatto (GLL) rules for both volume and
surface quadratures result in a generalized SBP property, despite the fact that these rules are
only accurate for degree (2N − 1) polynomials.

When a generalized SBP property holds for Qi , entropy stability can be proven using the
SBP property in Theorem 1 [15,16]. The focus of this work is to address cases where the
generalized SBP property (and as a result, the SBP property in Theorem 1) do not hold.

5 Skew-Symmetric Entropy Conservative Formulations on a Single
Element

While the SBP property has been used to derive entropy stable schemes, it is difficult to
enforce the SBP property (9) for Qi

N in certain discretization settings, such as hybrid and
non-conforming meshes. This difficulty is a result of the choices of volume and surface
quadrature which naturally arise in these settings. We first illustrate how specific pairings of
volume and surface quadratures can result in the loss of the SBP property (9) for Qi

N . We
then propose an alternative skew-symmetric version of the hybridized SBP operator which
satisfies the SBP property by construction. The use of these operators results in formulations
which are entropy conservative under a wider range of quadratures.
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5.1 Loss of the SBP Property

In this section, we give examples of specific pairings of volume and surface quadratures under
which the decoupled SBP property does not hold (see Fig. 1). We consider two dimensional
reference elements D̂ with spatial coordinates x, y.
Quadrilateral elements (Fig. 1a) We first consider a quadrilateral element D̂ with an (N +1)
point tensor productGLLvolumequadrature and (N+1)pointGauss quadrature on each face.
Letu, v ∈ QN denote two arbitrary degree N polynomials. The assumptions ofTheorem1 are
that the volume quadrature exactly integrates

∫
D̂

∂u
∂xi

v and that the surface quadrature exactly

integrates
∫
∂ D̂ uvn̂i on D̂. Because the (N + 1)-point Gauss rule is exact for polynomials

of degree 2N + 1 and the product uv ∈ P2N on each face, the surface quadrature satisfies
the assumptions of Theorem 1. However, the 1D GLL rule is only exact for polynomials of
degree (2N − 1). The derivative ∂u

∂x is a polynomial of degree (N − 1) in x , but is degree
N in y. Thus, ∂u

∂x v is a polynomial of degree (2N − 1) in x but degree 2N in y, and is not
integrated exactly by the volume quadrature.
Triangular elements (Fig. 1b) We next consider a triangular element D̂, where the volume
quadrature is exact for degree 2N polynomials [33] and an (N + 1)-point GLL quadrature
on each face. Let u, v ∈ PN denote two arbitrary degree N polynomials. The derivative
∂u
∂x ∈ P(N−1), and ∂u

∂x v ∈ P(2N−1), so the volume quadrature satisfies the assumptions of
Theorem 1. However, because the surface quadrature is exact only degree (2N − 1) polyno-
mials and the trace of uv ∈ P2N , the surface quadrature does not satisfy the assumptions of
Theorem 1.

These specific pairings of volume and surface quadratures appear naturally for hybrid
meshes consisting of DG-SEM quadrilateral elements (using GLL volume quadrature) and
triangular elements, as shown in Fig. 2. In Fig. 2a, the surface quadrature is a (N + 1)
point GLL rule, and results in a loss of the SBP property on the triangle. In Fig. 2b, the
surface quadrature is a (N + 1) point Gauss–Legendre rule, and results in a loss of the SBP
property on the quadrilateral element. The goal of this work is to construct high order accurate
discretizations which preserve entropy conservation for situations in which the decoupled
SBP property (9) does not hold.

(a) GLL volume quadrature, Gauss
surface quadrature

(b) Degree 2 N volume quadrature,
GLL surface quadrature

Fig. 1 Volume and surface quadrature pairs which do not satisfy the assumptions of Theorem 1, and thus do
not possess the decoupled SBP property (9). Volume quadrature nodes are drawn as circles, while surface
quadrature nodes are drawn as squares
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(a) Insufficiently accurate surface
quadrature on the triangle element.

(b) Incompatible surface quadrature on
the quadrilateral element.

Fig. 2 Examples of interface couplingswhich do not result in a decoupled SBPproperty (9).Volumequadrature
nodes are drawn as circles, while surface quadrature nodes are drawn as squares

5.2 An Alternative Construction of Hybridized SBP Operators

The property (9) relates the polynomial exactness of specific quadrature rules to algebraic
properties of quadrature-based matrices. We will relax accuracy conditions on these quadra-
ture rules by utilizing an alternative construction of Qi

N based on the skew-symmetric matrix

Qi − (
Qi )T .

Lemma 1 Let Q̃
i
N denote the skew-hybridized SBP operator defined by

Q̃
i
N = 1

2

[
Qi − (

Qi )T ET Bi

−Bi E Bi

]
. (10)

Then, Q̃
i
N satisfies the SBP property (9), and Q̃

i
N and Qi

N are identical if Qi satisfies a
generalized SBP property (8).

Proof The SBP property (9) holds by construction. The equivalence between Q̃
i
N and Qi

N
requires that

1

2

(
Qi +

(
Qi
)T) = Qi − 1

2
ET Bi E.

Rearranging terms shows that this condition is equivalent to a scaling of the GSBP property
(8)

1

2
Qi = 1

2

(
ET Bi E −

(
Qi
)T)

.

While Q̃
i
N is guaranteed to satisfy the SBP property, the accuracy of Q̃

i
N as a differentiation

operator nowdepends on the volume and surface quadrature rules. Before analyzing accuracy,

we first derive conditions under which it is possible to use Q̃
i
N to construct entropy stable

formulations of nonlinear conservation laws.

5.3 Entropy Stability on a Reference Element

In this section, we construct so-called “entropy stable” schemes on the reference element D̂.
These methods ensure that the entropy inequality (3) is satisfied discretely by avoiding the
use of the chain rule in the proof of entropy dissipation. Entropy stable schemes rely on two
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main ingredients: an entropy stable numerical flux as defined by Tadmor [4] and a concept
referred to as “flux differencing”. Let f S (uL , uR) be a numerical flux function which is a
function of “left” and “right” states uL , uR . The numerical flux f S is entropy conservative
if it satisfies the following three conditions:

f iS(u, u) = f i (u), (consistency)

f iS(uL , uR) = f iS(uR, uR), (symmetry)

(vL − vR)T f iS(uL , uR) = ψi (uL) − ψi (uR), (conservation) (11)

for i = 1, . . . , d . The construction of entropy stable schemes will utilize (11) in discretiza-
tions of both volume and surface terms in a DG formulation.

We can now construct a skew-symmetric formulation on the reference element D̂ and

show that it is semi-discretely entropy conservative under one additional condition on Q̃
i
N .

This formulation can be made entropy stable by adding interface dissipation. Let uh denote
the discrete solution, and let uq denote the values of the solution at volume quadrature points.
We define the auxiliary conservative variables ũ in terms of the L2 projections of the entropy
variables

vq = v
(
uq
)
, ṽ =

[
V q

V f

]
Pqvq , ũ = u (̃v) . (12)

A matrix formulation for (1) on D̂ is given in terms of ũ

M
duh
dt

+
d∑

i=1

[
V q

V f

]T (
2 Q̃

i
N ◦ Fi

S

)
1 + V T

f B
i ( f ∗

i − f (̃u f )
) = 0,

(
Fi
S

)

jk
= f iS

(
ũ j , ũk

)
, 1 ≤ j, k ≤ Nq + N f

q , (13)

where ũ f denotes the values of ũ on face nodes and f ∗ is some numerical flux, and Nq , N
f
q

denote the number of volume and face quadrature points, respectively. This formulation
is identical to that of [15], except that the hybridized SBP operators Qi

N are replaced with

their skew-hybridized versions Q̃
i
N . For this reason, we refer to (13) as the “skew-symmetric”

formulation. Under the condition that Q̃
i
N1 = 0, the formulation (13) is entropy conservative

over D̂:

Theorem 2 Assume that Q̃
i
N1 = 0. Then, the formulation (13) is entropy conservative such

that

1TW
dU (uq)

dt
+

d∑

i=1

1T Bi
(
ṽTf f

∗
i − ψi (̃u f )

)
= 0, uq = V quh . (14)

here ψi (̃u f ) denotes the function ψi evaluated at the face values of the entropy-projected
conservative variables ũ f .

The steps of the proof are identical to those of Theorem 2 in [15], and we skip them for
brevity.

Remark 2 We note that (13) is also equivalent to the following skew-symmetric formulation:

M
duh
dt

+
d∑

i=1

[
V q

V f

]T ((
Qi

N −
(
Qi

N

)T) ◦ Fi
S

)
1 + V T

f B
i f ∗

i = 0, (15)
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where the skew-symmetric matrix
(
Qi

N − (
Qi

N

)T )
possesses the following block structure:

(
Qi

N −
(
Qi

N

)T) =
(
Qi − QT

i ET Bi

−Bi E 0

)
.

The skew symmetric formulation can also be shown to be locally conservative in the sense
of [34], which is necessary to prove that the numerical solution convergences to the weak
solution under mesh refinement.

Theorem 3 The formulation (13) is locally conservative such that

1TW
d
(
V qu

)

dt
+

d∑

i=1

1T Bi f ∗
i = 0. (16)

Proof To show local conservation, we test (13) with 1

1TWV q
duh
dt

+
d∑

i=1

1T
((

Qi
N −

(
Qi

N

)T) ◦ FS

)
1 + 1TW f diag (̂n) f ∗

i = 0. (17)

Because FS is symmetric and
(
Qi

N − (
Qi

N

)T )
is skew-symmetric, their Hadamard product

is also skew-symmetric. Using that xT Ax = 0 for any skew symmetric matrix A, the volume

term 1T
((

Qi
N − (

Qi
N

)T ) ◦ FS

)
1 vanishes. ��

5.4 Properties of ˜Q
i
N and Quadrature Accuracy

The proof of the semi-discrete entropy inequality in Theorem 2 requires both the SBP con-

dition (9) and that Q̃
i
N1 = 0. While the SBP condition is guaranteed by construction,

Q̃
i
N1 = 0 only holds under sufficiently accurate quadrature rules. In [15], it was shown

that the hybridized SBP operator satisfies Qi
N1 = 0 for any volume quadrature such that

the mass matrix M is positive-definite. However, ensuring that the skew-hybridized SBP

operator satisfies Q̃
i
N1 = 0 now requires conditions on both volume and surface quadratures

which are related to a weak version of the generalized SBP condition (8).
Throughout the remainder of this work, we will assume that the volume and surface

quadrature satisfy the following assumptions for specific functions v(x):

Assumption 1 Let v ∈ V N denote some fixed polynomial. We assume that:

1. the mass matrix M is positive definite under the volume quadrature rule,
2. the volume quadrature rule is exact for integrals of the form∫

D̂
∂u
∂ x̂ j

v for all u ∈ V N
(
D̂
)
, j = 1, . . . , d .

3. the surface quadrature rule is exact for integrals of the form∫
∂ D̂ uvn̂ j for all u ∈ V N

(
D̂
)
, j = 1, . . . , d , and f ∈ ∂ D̂.

The conditions of Assumption 1 are relatively standard within the SBP literature [14,15,
23], though they have not previously depended on the specific choice of polynomial v(x). The

following theorem shows how these accuracy conditions are related to the condition Q̃
i
N1

= 0.

Lemma 2 Suppose Assumption 1 holds for v(x) = 1. Then, Q̃
i
N1 = 0.
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Proof Expanding out Q̃
i
N1 yields

Q̃
i
N1 = 1

2

[
Qi1 − (

Qi )T 1 + ET Bi1

−Bi E1 + Bi1

]
.

Here, 1 denotes the appropriate length vector with all entries equal to one. Since polynomials
are equal to their L2 projection, E1 = 1 [15,16], and

−Bi E1 + Bi1 = 0.

Moreover, since Qi is a differentation matrix, Qi1 = 0, and showing Q̃
i
N1 = 0 reduces to

showing that
(
Qi
)T

1 = ET Bi1.

However, under Assumption 1, the entries of
(
Qi )T 1 are exactly

∫
D̂

∂φ j
∂ x̂i

and the entries of

ET Bi1 are exactly
∫
∂ D̂ φ j (x)̂ni since φ j (x) ∈ V N . These two terms are then identical by

the exactness of integrals and fundamental theorem of calculus. ��
In Sects. 5.3 and 6.1, specific polynomials v(x)will bemotivated by the extension of the proof
of entropy stability on curved elements, and we will present examples of volume and surface
quadrature rules on simplicial and tensor product elements which satisfy Assumption 1 for
these choices of v.

5.5 On Quadrature Conditions for Assumption 1 with v = 1

Apart fromalgebraicmanipulations, onlyLemma2 is necessary to prove entropy conservation
in Theorem 2. Lemma 2 requires that Assumption 1 holds for v = 1. Thus, the volume and
surface quadratures must be sufficiently accurate to guarantee that the mass matrix is positive
definite and to integrate

∫

D̂

∂u

∂xi
,

∫

∂ D̂
un̂i . (18)

On simplicial elements, the mass matrix is guaranteed to be positive definite for any volume
quadrature which is exact for degree 2N polynomial integrands. This choice of volume
quadrature also guarantees that the volume term in (18) is integrated exactly. The surface
quadrature can thus be taken to be any quadrature rule which is exact for only degree N
integrands on faces. In contrast, the construction of simplicial decoupled SBP operators has
required face quadratures which are accurate for degree 2N polynomials [15,16].

On tensor product elements,we can take anydegree (2N−1)quadrature rulewhich ensures
a positive definite mass matrix (e.g. a (N +1)-point GLL quadrature), as a quadrature of this
accuracy is sufficient to exactly integrate the volume term in (18). For the surface quadrature,
we can again take any quadrature rule which is exact for degree N polynomial integrands.
For example, on a quadrilateral element, one can use

⌈ N+1
2

⌉
-point Gauss quadrature rule or

a
⌈ N+3

2

⌉
-point GLL rule as face quadratures for a degree N scheme.

On tensor product elements, we restrict ourselves to isotropic volume quadrature rules
which are construced from tensor products of one-dimensional quadrature formulas. For the
remainder of this work, the degree of themulti-dimensional quadrature rule on tensor product
elements will refer to the degree of exactness of the one-dimensional rule. For example, we
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refer to the quadrature rule constructed through a tensor product of one-dimensional (N +1)-
point GLL quadrature rules as a degree (2N − 1) quadrature rule. This choice of quadrature
is sufficient to guarantee that the mass matrix is positive definite [35].

5.6 On the Accuracy of Skew-Hybridized SBP Operators

Itwas shown in [15,21] that the hybridizedSBPoperator Qi
N canbe interpreted as augmenting

a volume approximation of the derivative with boundary correction terms. Let f (x), g(x)

denote two L2 integrable functions, and let f N , gN denote the vectors of values of f , g at
both volume and surface quadrature points. A degree N approximation u ∈ V N to f ∂g

∂xi
can

be constructed via

Mu =
[
V q

V f

]T
diag

(
f N
)
Qi

N gN , f N =
[
f q
f f

]
, gN =

[
gq
g f

]
, (19)

where u denotes the vector of coefficients for u.
This algebraic expression (19) can be reinterpreted as a quadrature approximation of a

variational problem, which can be mapped to a physical element Dk . We seek to approximate
f ∂g

∂xi
by u ∈ V N such that, ∀v ∈ V N

∫

Dk
uv =

∫

Dk
f
∂ΠN g

∂xi
v +

∫

∂Dk
(g − ΠN g)

(
f v + ΠN ( f v)

2

)
nki , (20)

where ΠN is the L2 projection operator (6). Integrating half of the volume term by parts
yields the skew-symmetric form of (20)

∫

Dk
uv = 1

2

∫

Dk

(
f
∂ΠN g

∂xi
v − g

∂ΠN ( f v)

∂xi

)

+ 1

2

∫

∂Dk
( f gv + (g − ΠN g) ( f v + ΠN ( f v))) nki ∀v ∈ V N , (21)

which yields a matrix formulation involving the skew-hybridized SBP operator Q̃
i
N

Mu =1

2

[
V q

V f

]T
diag

(
f N
) (

Qi
N −

(
Qi

N

)T + Bi
N

)

︸ ︷︷ ︸
Q̃
i
N

gN . (22)

The accuracy of the formulation (13) can be understood by analyzing the degree of poly-
nomial exactness of (22) as an approximation of the derivative. Let u(x) be a polynomial of
degree≤ N with coefficients u, and let uN = [

uq , u f
]T denote the values of u(x) at volume

and surface quadrature points. An approximation of ∂u
∂xi

can be computed by applying (22)
to compute

∂u

∂xi
≈ M−1

[
V q

V f

]T
Q̃

i
NuN . (23)

From (23), it can be shown that when Qi satisfies a generalized SBP property, the hybridized
SBP operator (9) produces a degree N approximation to the derivative [15]. When Qi does
not satisfy a generalized SBP property, we have the following lemma on the accuracy of (23):
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Lemma 3 Let M ≤ N. Suppose that the volume quadrature is exact for degree M + N − 1
polynomials on simplices, or for polynomials in QM+N−1,M+N ,M+N on tensor product
elements. Furthermore, assume that the surface quadrature is exact for degree M + N
polynomials on simplices and QM+N ,M+N on tensor product elements. Then, so long as the
mass matrix is positive definite, the skew-symmetric approximation of the x-derivative (23)
is exact for polynomials of degree M.

Proof Suppose u ∈ V M . Let u denote the polynomial coefficients of u, and let e denote the
difference between Diu (the exact coefficients of ∂u

∂xi
) and the approximation (23)

e = Diu − M−1
[
V q

V f

]T
Q̃

i
NuN

where e is a polynomial of degree N . Since u(x) is polynomial, the values of u(x) at
quadrature points are uq = V qu and u = Pquq . This implies that u f = V f Pquq = Euq .
Expanding the latter term yields

M−1
[
V q

V f

]T
Q̃

i
NuN = 1

2
M−1

[
V q

V f

]T [
Qi − (

Qi )T ET Bi

−Bi E Bi

][
uq
u f

]

= 1

2
M−1

[
V q

V f

]T [Qiuq +
(
ET Bi E − (

Qi )T
)
uq

Bi
(
u f − Euq

)

]

= 1

2
M−1V T

q

(
Qiuq +

(
ET Bi E −

(
Qi
)T)

uq

)
.

Since Qi = WV q Di Pq and M = V T
q WV q , we have that M−1V T

q Qiuq = Diu. This
simplifies the expression for error to

eT Me = 1

2
eTq

(
−Qiuq +

(
ET Bi E −

(
Qi
)T)

uq

)

= −1

2
eTq Qiuq + 1

2
eTq

(
ET Bi E −

(
Qi
)T)

uq , (24)

where we have introduced eq = V q e. Since u ∈ V M and e ∈ V N , by exactness of the
quadrature rules,

eTq

(
ET Bi E −

(
Qi
)T)

uq =
∫

∂ D̂
ueni −

∫

D̂
u

∂e

∂xi
=
∫

D̂

∂u

∂xi
e = eTq Qiuq .

Combining this with (24) implies that eT Me = 0, and sinceM is symmetric positive definite,
e = 0. ��

Lemma 3 suggests that, when a generalized SBP property does not hold, the use of under-
integrated quadratures results in a loss of one or more orders of accuracy. For example, if the
SBP property does not hold, then using (N + 1) point GLL rules (which are exact for only
polynomials of degree 2N − 1) for either volume or surface quadratures should result in a
loss of one order of accuracy compared to the use of (N + 1)-point Gauss rules (which are
exact for polynomials of degree 2N ). This is indeed observed in numerical experiments.
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6 Skew-Symmetric Entropy Conservative Formulations onMapped
Elements

We now construct skew-symmetric formulations on mapped elements. We assume some
domain Ω is decomposed into non-overlapping elements Dk , such that Dk is the image of
the reference element D̂ under an isoparametric mappingΦk . We define geometric change of
variables termsGk

i j as scaled derivatives of reference coordinates x̂ w.r.t. physical coordinates
x

∂u

∂xi
=

d∑

j=1

Gk
i j

∂u

∂ x̂ j
, Gk

i j = J k
∂ x̂ j
∂xi

, (25)

where J k is the determinant of the Jacobian of the geometric mapping on the element Dk .
We also introduce the scaled outward normal components ni J kf , which can be computed in

terms of (25) and the reference normals n̂ on D̂

nki J
k
f =

d∑

j=1

Gk
i j n̂ j . (26)

We also define nki as the vector containing concatenated values of the scaled outward normals
nki J

k
f at surface quadrature nodes. For the remainder of the work, we assume that the mesh

is watertight or “well-constructed” [16,36,37] such that at all points on any internal face, the
scaled outward normals nki J

k
f on the two elements sharing this face are equal and opposite.

As shown in the previous section, on a single element (and on affine meshes), it is possible
to guarantee entropy stability of the skew-symmetric formulation (13) under a surface quadra-
ture which is only exact for degree N polynomials. However, on curved meshes, stronger
conditions are required to guarantee entropy stability. This is due to the fact that the geometric
terms are now high order polynomials which vary spatially over each element. Moreover,
Lemma 2 assumes affine geometric mappings, and does not hold on curved elements. In this
section, we discuss how to extend Lemma 2 to curved simplicial and tensor product elements.

6.1 Curved Elements and the Geometric Conservation Law

In this section, we describe how to construct appropriate hybridized SBP operators on curved
meshes, and give conditions on the volume and surface quadrature rules under which a semi-
discretely entropy stable scheme can be constructed.

We first show how to construct appropriate SBP operators on curved elements. Let Gk
i j

denote the vector of scaled geometric termsGk
i j evaluated at both volume and surface quadra-

ture points, and let Q̃
j
N now denote the skew-symmetric construction of the hybridized SBP

operator for the j th reference coordinate. Hybridized SBP operators on a curved element Dk

can be defined as in [16] by

Qi
k = 1

2

d∑

j=1

(
diag

(
Gk

i j

)
Q̃

j
N + Q̃

j
Ndiag

(
Gk

i j

))
. (27)

Since Q̃
j
N satisfies a summation by parts property on the reference element D̂, then Qi

k
satisfies an analogous SBP property on the physical element Dk [16].
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We can now construct and prove entropy conservation and free stream preservation for
a skew-symmetric formulation on a physical curved element Dk . Free stream preservation
is necessary to discretely preserve both entropy conservation and the condition that con-
stant solutions are stationary solutions of systems of conservation laws. However, on curved
meshes, the presence of spatially varying geometric terms can result in the production of spu-
rious transient waves. The construction of geometric terms through (30) guarantees that the
resulting methods are free-stream preserving, and that constant solutions remain stationary
solutions of discretizations of (1).

Let Qi
k be given by (27), and define the curved mass matrix

Mk = V T
q Wdiag

(
Jk
)
V q .

Note that Mk is positive-definite so long as J k is positive at all quadrature points. We define
the auxiliary quantities ũ

vq = v
(
uq
)
, ṽ =

[
V q

V f

]
Pk
qvq , ũ = u (̃v) .

where Pk
q = (

Mk
)−1

V T
q Wdiag

(
Jk
)
. Then, we have the following theorem:

Theorem 4 Assume that Qi
k1 = 0. Let ũ+

f denote the face value of the entropy-projected
conservative variables ũ f on the neighboring element. Then, the formulation

Mk ∂uh
∂t

+
d∑

i=1

[
V q

V f

]T
2
(
Qi

k ◦ Fi
S

)
1 + V T

f W f diag
(
nki
) (

f ∗
i − f (̃u f )

) = 0,

(
Fi
S

)

jk
= f iS

(
ũ j , ũk

)
, 1 ≤ j, k ≤ Nq + N f

q ,

f ∗
i = f iS (̃u

+
f , ũ f ), on interior interfaces, (28)

is semi-discretely entropy conservative on Dk such that for uq = V qu,

1TWdiag
(
Jk
) ∂U (uq)

∂t
+

d∑

i=1

1TW f diag
(
nki
) (

ψi (̃u f ) − ṽTf f
∗
i

)
= 0.

Additionally, the method is free-stream preserving such that ∂uh
∂t = 0 for constant solutions.

We omit the proof of entropy conservation, since it is identical to the proofs in [15,16].
Free-stream preservation follows directly from Qi

k1 = 0 and the fact that FS is constant for
constant solutions [38].

The proof of Theorem 4 requires Qi
k1 = 0. For curved elements, additional steps must

also be taken to ensure this condition. Assuming Assumption 1 holds for v(x) = 1 and
expanding out the expression for Qi

k1 = 0 using (27) yields

Qi
k1 = 1

2

d∑

j=1

diag
(
Gk

i j

)
Q̃

j
N1 + Q̃

j
Ndiag

(
Gk

i j

)
1 = 1

2

d∑

j=1

Q̃
j
N

(
Gk

i j

)
= 0, (29)

where we have used that Q̃
j
N1 = 0 using Lemma 2.We refer to the condition Qi

k1 = 0 as the
discrete geometric conservation law (GCL) [38,39]. For degree N isoparametric mappings,
the GCL is automatically satisfied in two dimensions due to the fact that the exact geometric
terms Gk

i j are polynomials of degree N [38]. However, in three dimensions, the GCL is
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not automatically satisfied due to the fact that the degree of Gk
i j is larger than N . Thus, the

geometric terms cannot be represented exactly using degree N polynomials, and (29) must
be enforced through an alternative construction of Gk

i j .
To ensure that the geometric terms satisfy the GCL, we first rewrite the geometric terms

as the curl of some quantity r i , but interpolate r i before applying the curl [16,38–41]:

r i = ∂x
∂ x̂i

× x,

⎡

⎢⎢⎣

Gk
1 j

Gk
2 j

Gk
3 j

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

(−∇̂ × INgeo

(
x3∇̂x2

))
j(∇̂ × INgeo

(
x3∇̂x1

))
j(∇̂ × INgeo

(
x1∇̂x2

))
j

⎤

⎥⎥⎦ ,

Ngeo ≤
{
N + 1 (tetrahedra)

N (hexahedra)
, (30)

where INgeo denotes a degree Ngeo polynomial interpolation operator with appropriate inter-
polation nodes.2 The restriction on the maximum value of Ngeo ensures that Gk

i j ∈ V N (e.g.

Gk
i j ∈ PN on tetrahedral elements and Gk

i j ∈ QN on hexahedral elements), which is also
necessary to guarantee (29).

Because the skew-hybridized SBP operators Qi
k are now defined through (27), Lemma 2

and the proof of entropy stability no longer hold for curved elements and must be modi-
fied. The introduction of curvilinear meshes will impose slightly different conditions on the
accuracy of the surface quadrature. We discuss simplicial and tensor product elements sepa-
rately, as differences in the natural polynomial approximation spaces will result in different
assumptions for each proof.

Lemma 4 Let Dk be a curved element, and let the geometric terms Gk
i j be constructed using

(30). Let Assumption 1 hold for v = 1 and v = Gk
i j for all i, j = 1, . . . , d. Then,

Qi
k1 = 0,

Proof The proof of Qi
k1 = 0 is analogous to the proof of Lemma 2. The results follow for

tensor product elements using results from [38] and for simplicial elements using results
from [16]. In both cases, the proof relies only on the fact that Gk

i j ∈ V N . ��

The proof of global entropy conservation follows from summing up (14) over all elements
and noting that the surface terms cancel due to the symmetry and conservation properties of
the Tadmor flux (11) [15]. The entropy conservative formulations presented in this work can
be made entropy stable by adding appropriate interface dissipation, such as Lax-Friedrichs
or matrix-based penalization terms [15,18,45].

Remark 3 It is also possible to replace the curvedmassmatrixMk with amore easily invertible
weight-adjusted approximation while maintaining high order accuracy, entropy stability, and
local conservation [16]. This approximation avoids the inversion of dense weighted L2 mass
matrices Mk on curved simplicial elements, but is generally unnecessary on tensor product
elements as common choices of volume quadrature result in a diagonal (lumped) mass matrix
[11,19,21].

2 This interpolation step must be performed using interpolation points with an appropriate number of nodes
on each boundary [16]. These include, for example, GLL nodes on tensor product elements, and optimized
interpolation nodes on non-tensor product elements [42–44].
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6.2 On Quadrature Conditions for Assumption 1 for v = 1 and v = Gk
ij

The previous sections outline minimal conditions under which entropy stability is guaranteed
under a skew-symmetric formulation and a polynomial geometric mapping. In this section,
we translate these minimial conditions into conditions on quadrature accuracy.

Semi-discrete entropy conservation on curved meshes requires that Assumption 1 holds
for v = 1 and v = Gk

i j . We discuss specific choices of volume and surface quadrature for
which this assumption is valid, and summarize the maximum degree Ngeo of the polynomial
geometric approximation under which entropy stability holds for common choices of volume
and surface quadrature.

In order to ensure that the mass matrix is positive-definite in Assumption 1, the volume
quadrature must be degree 2N in general on simplices. The following lemma summarizes
expected behavior for surface quadrature rules of varying order:

Lemma 5 Let D̂ be a simplex with volume quadrature which is exact for degree 2N poly-
nomials. Let the surface quadrature be exact for polynomials of degree M + N. Then, the
skew-symmetric formulation (28) is entropy stable for Ngeo ≤ min (N + 1, M + 1).

Proof Entropy stability holds if Assumption 1 holds for v = 1 and v = Gk
i j . Simplicial

elements require Ngeo ≤ (N + 1) in order to guarantee that Gk
i j ∈ PNgeo−1 ⊂ PN , which is

necessary to satisfy the discrete GCL [16]. Then, for u ∈ PN , ∂u
∂ x̂ j

∈ PN−1, the integrands

in Assumption 1 are ∂u
∂ x̂ j

v ∈ PN+Ngeo−2 and uvni ∈ PN+Ngeo−1 for v = Gk
i j . The volume

quadrature exactly integrates thefirst integrand for Ngeo ≤ N+1,while the surface quadrature
exactly integrates the second integrand for M ≥ Ngeo − 1, or Ngeo ≤ M + 1. ��

The situation is more complicated for curved tensor product elements. It was shown in
Sect. 5.5 that tensor product quadratures of degree (2N −1) satisfy Assumption 1 for v = 1.
However, in contrast to the simplicial case, it is not immediately clear that degree (2N − 1)
volume quadratures exactly integrate

∫
D̂

∂u
∂ x̂ j

v for v = Gk
i j for tensor product elements. The

difference between simplicial and tensor product elements is the polynomial space in which
the derivative lies. In contrast to the simplicial case, if u ∈ QN , ∂u

∂ x̂ j
/∈ QN−1. Consider

the three-dimensional case with u, v ∈ QN and i = 1. Then, differentiation reduces the
polynomial degree in one coordinate but not others and ∂u

∂ x̂1
∈ QN−1,N ,N . As a result,

∂u
∂ x̂ j

v /∈ Q2N−1, and a tensor product quadrature of degree (2N − 1) (in each coordinate)

does not exactly integrate
∫
D̂

∂u
∂ x̂ j

v for general v ∈ QN .
We address the quadrilateral case first:

Lemma 6 Let D̂ be aquadrilateral. Suppose the volumequadrature be exact for degree M+N
polynomials, and that the surface quadrature be exact for polynomials of degree M + N.
Then, the skew-symmetric formulation (28) is entropy stable for Ngeo ≤ min (N , M + 1).

Proof As in Lemma 5, entropy stability holds if Assumption 1 holds for v = 1 and v = Gk
i j .

The case of v = 1 was addressed previously, and we focus on v = Gk
i j . We first characterize

the polynomial degree of the geometric terms Gk
i j . In contrast to the simplicial case, tensor

product elements require Ngeo ≤ N in order to ensure that Gk
i j ∈ QN ,N and that the discrete

GCL is satisfied [38]. On a quadrilateral element with a degree Ngeo geometric mapping, Gk
i j

is

Gk
11 = ∂x2

∂ x̂2
∈ QNgeo,Ngeo−1, Gk

12 = −∂x2
∂ x̂1

∈ QNgeo−1,Ngeo ,
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Gk
21 = −∂x1

∂ x̂2
∈ QNgeo,Ngeo−1, Gk

22 = ∂x1
∂ x̂1

∈ QNgeo−1,Ngeo .

Since ∂u
∂ x̂1

∈ QN−1,N and ∂u
∂ x̂2

∈ QN ,N−1

∂u

∂ x̂i
Gk

i j ∈ QN+Ngeo−1.

The volume quadrature exactly integrates this integrand for M ≥ Ngeo − 1.
We now consider the condition in Assumption 1 on the surface integrals

∫
∂ D̂ uvn̂ j for

v = Gk
i j . For left and right faces of the quadrilateral, n̂2 = 0, so this condition reduces to

ensuring that the quantity uGk
i1 is integrated exactly using quadrature for i = 1, 2. Since Gk

i1
are degree Ngeo − 1 in the x̂2 coordinate, Gk

i1 is degree Ngeo − 1 and uGk
i1n̂1 ∈ QN+Ngeo−1

along the left and right faces. Similarly, uGk
i2n̂2 ∈ QN+Ngeo−1 along the top and bottom faces

and are zero along the left and right faces. The surface quadrature rule exactly integrates such
integrands for M ≥ Ngeo − 1, or Ngeo ≤ M + 1. ��

Existing proofs of entropy stability on quadrilaterals rely on (N + 1)-point GLL volume
and surface quadratures, which are exact for degree 2N − 1 polynomials. The novelty of
Lemma 7 is that the proof holds for any combination of degree 2N − 1 volume and surface
quadratures (for example, (N+1)-point GLL volume quadrature and an (N−1)-point Gauss
surface quadrature).

We now consider the three-dimensional case. In contrast to the quadrilateral case, the
GCL is not automatically satisfied for a degree Ngeo ≤ N geometric mapping. Instead,
GCL-satisfying geometric terms are approximated using (30). Expanding out the expression
for Gk

11 gives

Gk
11 = ∂

∂ x̂3
INgeo

(
x3

∂x2
∂ x̂2

)
− ∂

∂ x̂2
INgeo

(
x3

∂x2
∂ x̂3

)
∈ QNgeo .

Repeating for the other geometric terms, one can show that Gk
i j ∈ QNgeo on hexahedral

elements. Thus, if u ∈ QN , ∂u
∂ x̂1

Gk
i1 ∈ QN+Ngeo−1,N+Ngeo,N+Ngeo , and is only integrated

exactly by volume quadratures of degree (2N − 1) for geometric degrees Ngeo ≤ (N − 1).
Similarly, Assumption 1 does not hold under degree (2N − 1) surface quadratures unless
Ngeo ≤ (N − 1), due to the fact that traces of Gk

i j are degree Ngeo polynomials in each

coordinate.3 We summarize these findings in the following lemma for hexahedral elements:

Lemma 7 Let D̂ be a hexahedral element, with geometric terms constructed using (30). Let
the volume quadrature be exact for degree M+N polynomials, and let the surface quadrature
be exact for polynomials of degree M + N. Then, the skew-symmetric formulation (28) is
entropy stable for Ngeo ≤ min (N , M).

Most implementations on tensor product elements utilize volume and surface quadratures
of either degree (2N − 1) or 2N . We summarize below for different pairings of volume and
surface quadrature the maximum degree Ngeo under which Assumption 1 is satisfied and
entropy stability is guaranteed:

3 It is possible to construct the geometric terms for Ngeo = N using a local Hdiv basis where

r i ∈ QN−1,N ,N × QN ,N−1,N × QN ,N ,N−1.

Then, the geometric terms satisfy ∇ × r i ∈ QN ,N−1,N−1 × QN−1,N ,N−1 × QN−1,N−1,N with traces in
QN−1, and Assumption 1 holds under degree (2N − 1) volume and surface quadrature. This approach will
be investigated in more detail in future work.

123



Journal of Scientific Computing (2019) 81:459–485 477

1. On quadrilateral elements, Assumption 1 holds for Ngeo ≤ N and any tensor product
volume and surface quadratures of degree (2N − 1)

2. On hexahedral elements, Assumption 1 holds for Ngeo ≤ N − 1 and any tensor product
volume and surface quadratures of degree (2N − 1). If the SBP property holds (e.g. for
GLLquadrature, or for volumeand surface quadratures of degree 2N ) thenAssumption 1
holds for Ngeo ≤ N .

We note that the condition Ngeo ≤ N − 1 is non-standard for tensor product elements.
However, this condition is only necessary for entropy stability when Qi does not satisfy a
generalized SBP property (see Remark 1). To the author’s knowledge, this setting has not
been considered within the literature.

7 Numerical Experiments

In this section, we present two-dimensional experiments which verify the theoretical results
presented and qualify the accuracy of the proposed methods. We begin by investigating the
maximum stable timestep, stability, and accuracy of the skew-symmetric formulation on
triangular and quadrilateral meshes, and conclude with two-dimensional experiments on a
hybrid mesh containing mixed quadrilateral and triangular elements.

We consider numerical solutions of the 2D compressible Euler equations

∂ρ

∂t
+ ∂ (ρu)

∂x1
+ ∂ (ρv)

∂x2
= 0,

∂ρu

∂t
+ ∂

(
ρu2 + p

)

∂x1
+ ∂ (ρuv)

∂x2
= 0,

∂ρv

∂t
+ ∂ (ρuv)

∂x1
+ ∂

(
ρv2 + p

)

∂x2
= 0,

∂E

∂t
+ ∂ (u(E + p))

∂x1
+ ∂ (v(E + p))

∂x2
= 0,

where we have introduced the pressure is p = (γ − 1)
(
E − 1

2ρ(u2 + v2)
)
and the specific

internal energy ρe = E − 1
2ρ(u2 +v2). We seek entropy stability with respect to the entropy

for the compressible Navier–Stokes equations [24]

U (u) = − ρs

γ − 1
,

where s = log
(

p
ργ

)
denotes the specific entropy. The mappings between conservative and

entropy variables in two dimensions are given by

v1 = ρe(γ + 1 − s) − E

ρe
, v2 = ρu

ρe
, v3 = ρv

ρe
, v4 = − ρ

ρe

ρ = −(ρe)v4, ρu = (ρe)v2, ρv = (ρe)v3, E = (ρe)

(
1 − v22 + v23

2v4

)
,

where ρe and s can be expressed in terms of the entropy variables as

ρe =
(

(γ − 1)

(−v4)
γ

)1/(γ−1)

e
−s

γ−1 , s = γ − v1 + v22 + v23

2v4
.
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There exist several choices for entropy conservative fluxes [7,46,47]. We utilize the the
entropy conservative numerical fluxes given by Chandrashekar in [7]

f 11,S(uL , uR) = {{ρ}}log {{u}} , f 12,S(uL , uR) = {{ρ}}log {{v}} ,

f 21,S(uL , uR) = f 11,S {{u}} + pavg, f 22,S(uL , uR) = f 12,S {{u}} ,

f 31,S(uL , uR) = f 22,S, f 32,S(uL , uR) = f 12,S {{v}} + pavg,

f 41,S(uL , uR) = (
Eavg + pavg

) {{u}} , f 42,S(uL , uR) = (
Eavg + pavg

) {{v}} ,

where the quantities pavg, Eavg, ‖u‖2avg are defined as

pavg = {{ρ}}
2 {{β}} , Eavg = {{ρ}}log

2 {{β}}log (γ − 1)
+ ‖u‖2avg

2
, β = ρ

2p
,

‖u‖2avg = 2({{u}}2 + {{v}}2) − ({{u2}}+ {{v2}}) .
From here on, entropy conservative refers to a scheme which uses these entropy conservative
fluxes at inter-element interfaces. We will refer to schemes which add interface dissipation
as entropy stable. In this work, we utilize a local Lax–Friedrichs interface dissipation.

For all convergence experiments, we compare the numerical solution to analytic solution
for the isentropic vortex problem [48]

ρ(x, t) =
(
1 −

1
2 (γ − 1)(βe1−r(x,t)2)2

8γπ2

) 1
γ−1

, p = ργ ,

u(x, t) = 1 − β

2π
e1−r(x,t)2(x2 − c2), v(x, t) = β

2π
e1−r(x,t)2(x2 − c2).

Here, u, v are the x1 and x2 velocity and r(x, t) = √
(x1 − c1 − t)2 + (x2 − c2)2. The

following experiments utilize c1 = 5, c2 = 0 and β = 5.
A low storage 4th order Runge–Kutta scheme [49] is used for all numerical experiments.

The time-step is estimated based on formulas derived for linear advection in [28,50]

dt = C
h

cmax max
{ 1
2CT ,CI

}

where h is themesh size, cmax is themaximumwave-speed,C is a user-defined CFL constant,
andCT ,CI are constants in finite element inverse and trace inequalities. These constants scale
proportionally to N 2, though precise values of CI ,CT vary slightly depending on the choice
of volume or surface quadrature used. The dependence of CI ,CT on quadrature is discussed
in more detail in Appendix A, where computed values are also given.

7.1 Choices of Volume and Surface Quadrature Considered

On quadrilaterals, we consider volume quadratures which are tensor products of one-
dimensional quadrature rules, while for triangles we utilize volume quadratures from [33].
Surface quadratures are constructed face-by-face, and we refer to surface quadrature rules
by the specific quadrature used over each face.

We consider three choices of volume and surface quadrature on quadrilaterals:

1. (N + 1) point GLL volume quadrature, (N + 1) point GLL surface quadrature.
2. (N + 1) point GLL volume quadrature, (N + 1) point Gauss surface quadrature,

123



Journal of Scientific Computing (2019) 81:459–485 479

3. (N + 1) point Gauss quadrature, (N + 1) point Gauss surface quadrature,

On triangles, we consider two cases:

1. degree 2N volume quadrature, (N + 1) point Gauss surface quadrature,
2. degree 2N volume quadrature, (N + 1) point GLL surface quadrature.

These choices can be combined to provide three different options on two-dimensional
hybrid meshes of quadrilateral and triangular elements, which are motivated by balancing
computational efficiency and accuracy:

1. Option 1: (N + 1) point GLL volume quadrature on quadrilaterals and (N + 1) point
GLL surface quadrature on quadrilaterals and triangles.

2. Option 2: (N + 1) point GLL volume quadrature on quadrilaterals and (N + 1) point
Gauss surface quadrature on quadrilaterals and triangles.

3. Option 3: (N + 1) point Gauss volume quadrature on quadrilaterals and (N + 1) point
Gauss surface quadrature on quadrilaterals and triangles.

All three options assume a triangular volume quadrature which is exact for all polynomials
of degree 2N or less.

All three options result in similar computational costs on triangles, but slight differences in
computational cost and complexity on quadrilaterals. On quadrilaterals, Option 1 is the most
computationally efficient option, as the formulation (4) reduces to a standard entropy stable
DG-SEM [12] or spectral collocation method [11]. Option 3 is most involved, resulting in
a Gauss collocation method on quadrilaterals [21], and requires interpolation and two-point
flux interactions between lines of volume quadrature nodes and boundary nodes.

Option 2 is slightly more expensive than Option 1, as the solution must be interpolated
fromGLL toGauss nodes on the boundary.However, this is less expensive thanOption 3 since
volume GLL nodes include GLL boundary nodes as a subset. This implies that the matrix
V f is sparse, such that interpolation to boundary Gauss nodes involves only nodal values
at boundary GLL nodes. Thus, Option 2 requires only two-point flux computations between
boundary GLL and Gauss nodes. In contrast, the Gauss collocation scheme in Option 3
computes two-point flux interactions through f S between each boundary node and a line of
volume nodes.

7.2 Verification of Discrete Entropy Conservation

We first verify that, for an entropy conservative flux and periodic domain, the spatial for-
mulation tested against the projected entropy variables is numerically zero. We refer to this
quantity as the entropy right-hand side (RHS). Section 6.2 outlines conditions on quadra-
ture accuracy which guarantee that the formulations (13) and (28) are discretely entropy
conservative. These numerical results confirm that these conditions are tight.

We induce a curved polynomial mapping by defining curved coordinates x̃ through a
mapping of Cartesian coordinates x ∈ [−1, 1]2

x̃1 = x1 + α cos
(π

2
x1
)
sin (πx2)

x̃2 = x2 + α sin (πx1) cos
(π

2
x2
)

,

where α = 1/8 for the following experiments. We vary the geometric degree of this mapping
from Ngeo = 1 to Ngeo = N , where Ngeo denotes the polynomial degree of the geometric
mapping on a quadrilateral or triangular element.
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Table 1 Maximum absolute value of the entropy RHS for degree N = 6 over t ∈ [0, 1] on triangular and
quadrilateral meshes

Ngeo = 1 Ngeo = 2 Ngeo = 3 Ngeo = 4 Ngeo = 5 Ngeo = 6

(a)Triangular mesh

M = 5 8.68e−14 9.41e−14 9.31e−14 9.10e−14 9.92e−14 8.90e−14

M = 3 1.01e−13 8.87e−14 8.79e−14 9.68e−14 0.00833 0.00967

M = 1 1.8e−13 1.82e−13 1.998 2.104 2.080 2.086

(b) Quadrilateral mesh

M = 5 1.74e−14 1.06e−14 1.31e−14 1.35e−14 1.06e−14 1.31e−14

M = 3 2.89e−14 2.59e−14 2.83e−14 2.43e−14 3.20e−05 3.27e−05

M = 1 4.68e−14 3.77e−14 0.1548 0.1532 0.1517 0.1517

The volume quadrature for the quadrilateral mesh is taken to be (N + 1)-point GLL quadrature. The surface
quadrature is taken to be a 1D GLL quadrature with a varying number of points, such that the rule is exact for
degree M + N polynomials

Since Assumption 1 requires that the volume quadrature is sufficiently accurate to ensure
that the mass matrix is positive-definite, we fix the volume to quadrature to be exact for
degree 2N polynomials on triangles. On quadrilaterals, we fix the volume quadrature to be
an (N + 1) point GLL quadrature. To verify the conditions given in Sect. 6.2, we vary the
accuracy of the 2D surface quadrature rule.

The initial condition is taken as the L2 projection of the discontinuous profile

ρ =
{
3 |x − x0| < 2.5

2 otherwise
, x0 = 7.5, u = v = 0, p = ργ .

We evolve the solution until final time T = 1.0 on a domain [0, 15]×[−.5, .5] using the skew
symmetric formulation with N = 6 and a CFL of 1/2. Table 1 shows the maximum entropy
RHS over the duration of the simulation.We observe that for all Ngeo ≤ M+1, themaximum
entropy RHS is O(10−14) and at the level of machine precision. When Ngeo > M + 1, we
observe that the maximum entropy RHS increases. We note that the case of M = 5 for the
quadrilateral corresponds to the use of an (N+1)-point GLL rule for both volume and surface
quadrature. For this choice of quadrature, the skew-symmetric formulation is equivalent to
the entropy stable spectral collocation or DG-SEM methods of [11,12].

7.3 Hybrid Quadrilateral-Triangular Meshes

We conclude with experiments on a mixed mesh containing both quadrilateral and triangular
elements (Fig. 3a). Figure 3 shows L2 errors for the isentropic vortex computed at T = 5 for
Options 1, 2, and 3.

We observe that, in all cases, Option 1 is less accurate than Options 2 and 3, and that
Option 3 achieves a rate of convergence close to the optimal O(hN+1) rate, while Option 1
typically achieves rates of convergence between O(hN ) and O(hN+1/2). However, Option 2
behaves differently depending on the order N . For N = 1, Option 2 achieves an accuracy
similar to Option 1. However, as N increases, Option 2 becomes more accurate. For N = 4,
Option 2 achieves the same level of error observed for Option 3. This suggests that Lemma 3
may be sufficient but not necessary for full order accuracy. These results may also differ
depending on the type of interface dissipation applied [51].

123



Journal of Scientific Computing (2019) 81:459–485 481

10−1.5 10−1 10−0.5

10−4

10−2

100
N = 1
N = 2
N = 3
N = 4

Mesh size h

L
2

er
ro

rs

GLL-GLL

GLL-Gauss

Gauss-Gauss

(b) Convergence for N = 1, 2, 3, 4

Fig. 3 Coarse hybridmesh and L2 errors for the isentropic vortex solution for Option 1, Option 2, andOption 3
for N = 1, . . . , 4

8 Conclusions

We have constructed skew-symmetric “modal” DG formulations of nonlinear conservation
laws which are entropy stable under less restrictive conditions on quadrature accuracy. These
formulations aremotivated by volume and surface quadratureswhich arise naturally on hybrid
meshes. Because these quadrature rules do not induce operators which satisfy properties
necessary for entropy stability, we derive new “skew-symmetric” operators which satisfy
necessary conditions under reduced restrictions on quadrature. We also derive a separate
set of conditions relating the accuracy of the new operators and the degree of accuracy of
each quadrature rule, and show that design order accuracy is recovered under the common
assumptions of degree 2N − 1 volume quadratures and degree 2N surface quadratures.
Finally, we derive conditions under which the skew-symmetric formulation is entropy stable
on curved meshes in terms of the degree of quadrature accuracy and polynomial degree of
the geometric mapping. Numerical experiments confirm the entropy stability and high order
accuracy of the proposed schemes on triangular, quadrilateral, and 2D hybrid meshes.

Acknowledgements The author thanks David C. Del Rey Fernandez for helpful discussions, as well as the
two anonymous reviewers whose comments significantly improved the readabilty of this manuscript. Jesse
Chan is supported by the National Science Foundation under awards DMS-1719818 and DMS-1712639.

ADependence of Inverse and Trace Constants on Quadrature

The maximum stable timestep under explicit time-stepping depends on specific choices of
volume and surface quadrature. The dependence of timestep on quadrature has been docu-
mented for tensor product elements in [52], where they showed that for a high order Taylor
method in time, the maximum stable timestep under (N + 1)-point GLL volume and surface
quadratures is roughly twice as large as the maximum stable timestep when volume/surface
integrals are approximated using (N + 1) point Gauss quadratures.

This discrepancy can be understood in terms of constants in finite element inverse and
trace inequalities. It was shown in [28,50] that, for linear problems, the maximum stable
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Table 2 Inverse and trace constants for triangular and quadrilateral elements with different quadrature con-
figurations

N 1 2 3 4 5 6 7

(a) CI , quadrilateral elements

Volume GLL 2 12 37.16 91.67 195.98 374.78 657.28

Volume Gauss 6 30 85.06 190.12 369.45 652.30 1072.75

(b) CT , quadrilateral elements

Volume GLL, surface GLL 2 6 12 20 30 42 56

Volume Gauss, surface Gauss 6 12 20 30 42 56 72

(c) CI , triangular elements

Deg. 2N vol. quad. [33] 9 39.27 100.10 213.28 401.16 695.48 1127.48

(d) CT , triangular elements

Surface GLL 12 16.14 20.52 28.12 35.42 45.97 55.76

Surface Gauss 6 10.90 16.29 24 31.88 42.42 52.89

time-step scales inversely with the order-dependent constants CI ,CT , where
∫

D̂
|∇u|2 ≤ CI

∫

D̂
u2,

∫

∂ D̂
u2 ≤ CT

∫

D̂
u2, ∀u ∈ V N . (31)

Here, the integrals over D̂, ∂ D̂ are computed using the same volume and surface quadrature
rules used for computations. These constants can be used to bound surface integrals which
appear in DG formulations, which can in turn be used to construct bounds on the spectral
radius of DG discretization matrices. The maximum stable timestep dtmax is thus inversely
proportional to the inverse and trace constants

dtmax ∝ C−1
T ,C−1

I

The constants CI ,CT depend on the choices of volume and surface quadrature used to eval-
uate each of the integrals in (31). It is known that L2 norm computed using GLL quadrature
is weaker than the full L2 norm [35,53]. For the domain D̂ = [−1, 1]d in d dimensions, it
can be shown that

∫

D̂
u2 ≤

∫

D̂,GLL
u2 ≤

(
2 + 1

N

)d/2 ∫

D̂
u2 ∀u ∈ QN , (32)

where the middle integral is under-integrated using GLL quadrature. In other words, the
discrete L2 norm induced using GLL quadrature is weaker than the L2 norm induced by a
more accurate quadrature rule, which will be reflected in the trace and inverse constants.

Table 2 shows trace and inverse constants for triangular and quadrilateral elements under
several different configurations of quadrature. For quadrilateral elements at high orders, we
observe that the degree N inverse constants CI under Gauss quadrature are roughly as large
as the degree (N +1) inverse constants under (volume) GLL quadrature. The degree N trace
constants CT under Gauss quadrature are exactly equal to the degree (N +1) trace constants
under GLL quadrature, which was proven in [28]. Trace constants under GLL volume and
Gauss surface quadrature are also identical to trace constants computed usingGLLquadrature
for both volume and surface integrals, which is a consequence of the lower bound in (32).

Several observations can be made based on the values of CI ,CT presented in Table 2.
On quadrilaterals, the maximum stable time-step for a degree N DG scheme using Gauss
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quadrature is expected to be smaller than that of a degree N scheme using GLL quadrature,
which matches observations in [52]. Additionally, the maximum stable timestep under GLL
volume quadrature and Gauss surface quadrature should be the same as the maximum stable
timestep when GLL quadrature is used for both volume and surface integrals (e.g. DG-SEM).
For triangles, the maximum stable timestep should be smaller under surface GLL quadrature
compared to surfaceGauss quadrature. However, we note that, while bounds on themaximum
stable time-step can be derived based on the constants CI ,CT [28,50], these bounds are not
tight for upwind or dissipative fluxes [54].
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